شرکت تدبیر انرژی امید

شرکت تدبیر انرژی امید
دنبال کنندگان ۴ نفر
این وبلاگ را دنبال کنید
طبقه بندی موضوعی

۷۲ مطلب در بهمن ۱۳۹۴ ثبت شده است

جمعه, ۲۳ بهمن ۱۳۹۴، ۱۱:۱۳ ب.ظ

The AR-MAX1 compressor comes to life

The AR-MAX1 compressor comes to life

 

 

 

 

Source MAN turbomachinery

 

 

 

 

۰ نظر موافقین ۰ مخالفین ۰ ۲۳ بهمن ۹۴ ، ۲۳:۱۳
جمعه, ۲۳ بهمن ۱۳۹۴، ۱۰:۵۷ ب.ظ

3D animation of integrally geared centrifugal compressor

3D animation of integrally geared centrifugal compressor

 

 

Source MAN turbomachinery

 

 

 

 

۰ نظر موافقین ۰ مخالفین ۰ ۲۳ بهمن ۹۴ ، ۲۲:۵۷
جمعه, ۲۳ بهمن ۱۳۹۴، ۱۰:۳۷ ب.ظ

3D animation of axial flow compressor working principle

3D animation of axial flow compressor working principle

Source MAN turbomachinery

۱ نظر موافقین ۰ مخالفین ۰ ۲۳ بهمن ۹۴ ، ۲۲:۳۷
جمعه, ۲۳ بهمن ۱۳۹۴، ۱۰:۳۱ ق.ظ

Introduction to Pump Rotordynamics

Introduction to Pump Rotordynamics

 

مقدمه ای بر روتوردینامیک پمپ ها

 

این نوشتار به معرفی مسایل اساسی در زمینه روتوردینامیک توربوماشین ها، ارتعاش بیش ازحد و ناپایداری می پردازد. عملکرد قابل قبول توربوماشین ها به طراحی و کارکرد مناسب اجزاء آب بندی و یاتاقان هایی که یک روتور را نگه می دارند، وابسته می باشد. مبانی اصلی روانکاری از جزییات کارکرد یاتاقان های هیدرو دینامیک و یاتاقان های هیدرو استاتیک و آب بندها پیروی می کند. تفاوت مابین این اجزاء همراه با محاسبات خلاصه ای از اثر آنها بر روی روتوردینامیک مشخص شده است. معادلات اصلی برای مدل سازی سیستم خطی یاتاقان بندی همراه با مثالی از روتوردینامیک یک کمپرسور چند طبقه ارایه شده است. روتوردینامیک پمپ ها  مطلب چندان متفاوتی از دیگر ماشین های دوار ندارد.  مثالی نیز از تحلیل روتوردینامیکی پمپ چند طبقه نیز آورده شده است.

Download Link:

Introduction to Pump Rotordynamics
حجم: 2.05 مگابایت


۰ نظر موافقین ۰ مخالفین ۰ ۲۳ بهمن ۹۴ ، ۱۰:۳۱
جمعه, ۲۳ بهمن ۱۳۹۴، ۰۹:۱۱ ق.ظ

Turbomachinery Condition Monitoring and Failure Prognosis

Turbomachinery Condition Monitoring and Failure Prognosis

 

پایش وضعیت توربو ماشین ها و پیش یابی خرابی ها




این مقاله مروری است بر گسترش ها و پیشرفت های صورت گرفته در تکنولوژی های پایش وضعیت، پیش یابی عیوب و عیب یابی توربو ماشین ها. در آن ارزیابیی از توانایی های تکنولوژی های موجود در زمینه های حساس انجام می شود. فلسفه های تعمیر و نگهداری مانند تعمیر و نگهداری بر مبنای وضعیت (Condition based maintenance)  تعمیر و نگهداری برمبنای قابلیت اطمینان (Reliability Centered maintenance)، تعمیر و نگهداری برمبنای سود(Profit centered maintenance) مورد بحث قرار می گیرند. تکنولوژی های موجود عیب یابی  که بر اساس پایش وضعیت هستند توصیف می گردند. خلاء های تکنولوژی موجود و مسایل و مشکلاتی که هنوز حل نشده اند ارایه می گردند  و منابع اطلاعاتی موجود و سازمان هایی که در این زمینه درای فعالیت هستند معرفی می گردند.

Download Link:

Turbomachinery Condition Monitoring and Failure Prognosis
حجم: 130 کیلوبایت

۰ نظر موافقین ۰ مخالفین ۰ ۲۳ بهمن ۹۴ ، ۰۹:۱۱
پنجشنبه, ۲۲ بهمن ۱۳۹۴، ۱۰:۴۶ ق.ظ

Metering system part 1

سیستم های میتیرینگ (Metering System)

قسمت اول

 نویسنده: جناب آقای مهندس غلامرضا محسنی

در این سری از نوشتارها در خصوص سیستم های میترینگ توضیح داد خواهد شد.

Crude Oil Custody Transfer Metering System

 

مقدمه

سیستم میترینگ بطور خاص در صنعت نفت به سیستم های اندازه گیری حجم یا جرم سیالات (گاز و مایع یا حالت دو فازی) گفته می شود. این سیستم ها به دو دسته کلی دینامیکی و استاتیکی تقسیم می شوند. اندازه گیری کمیت سیال در حالت سکون ، اندازه گیری استاتیکی  می باشد و اندازه گیری این کمیت در حالتی که سیال در جریان و حرکت است اندازه گیری نوع دینامیکی می باشد. دقت اندازه گیری، ایمنی، قابلیت اطمینان، تکرار پذیری از مهمترین عناصری هستند که در حین اندازه گیری کمیت سیال بایستی در نظر گرفته شوند. از نقطه نظر عناصر فوق الذکر این دستگاهها را می توان به دو دسته کلی دستگاه های اندازه گیری کمیت سیالات در حین فرایند( Process Flow Measurement) و دستگاه های اندازه گیری کمیت سیالات در هنگام انتقال و خرید و فروش (Custody Transfer)  تقسیم نمود.

روشهای مختلف و متنوعی برای اندازه گیری کمیت سیالات وجود دارد که بر اساس نوع سیال و نیز شرایط فرایندی و محدودیت های موجود و نیز مقادیر مطلوب عناصر اشاره شده در بالا، قابل انتخاب می باشند. طبیعتا مزایا و معایب هر کدام از این روشها نیز در انتخاب آنها نقش دارند. از آنجا که عبارت Metering System عموما برای دستگاه های اندازه گیری کمیت سیالات در هنگام نقل و انتقال و نیزخرید و فروش(Custody Transfer)  بکار گرفته می شود، لذا در این نوشته تنها به به این مقوله پرداخته خواهد شد.

 

روشهای اندازه گیری کمیت سیالات بصورت Custody Transfer

 

روشهای رایج برای اندازه گیری کمیت سیالات بصورت Custody Transfer شامل موارد زیر می باشند:

·        میترهای نوع توربینی

·        میترهای نوع پیمانه ای (PD meters)

·        میترهای نوع کوریولیس

·        میترهای نوع آلتراسونیک

فاکتورهایی نظیر فشار، فلو و رنج و شدت تغییرات آن، ویسکوزیته، افت فشار، رنج دما و میزان آلایندگی ها در سیال و نیز گاز یا مایع بودن در انتخاب یکی از روشهای فوق موثر می باشند. سادگی یا پیچیدگی طراحی، عملکرد و نیز تعمیرات و نگهداری، قیمت اولیه و نیز هزینه بهره برداری و نگهداری سیستم، حساسیت در مقابل سایش و خوردگی در انتخاب روش مناسب تعیین کننده می باشد. دسته دیگر ی از عوامل موثر در انتخاب روش مناسب عبارتند از وزن و حجم تجهیزات، تجهیزات جانبی لازم، مسائل و محدودیتهای مربوط به پرووینگ و کالیبراسیون. نهایتا بایستی در نظر داشت که کمیت مورد نظر (جرم یا حجم) برخی از این روشها را حذف خواهد نمود.

 

کالیبراسیون و پرووینگ میترها

 

سیستم های اندازه گیری کمیت سیالات برای موارد Custody Transfer نیاز به انجام کالیبراسیون و پرووینگ با دقت بسیار بالا دارند. به عبارت دیگر صحت، دقت و تکرارپذیری سیستم بایستی به روشی قابل قبول و استاندارد ثابت گردند. این مهم از طریق مقایسه مقدار قرائت شده دستگاه با یک حجم مشخص و دقیق انجام می شود. در واقع هدف از پرووینگ میتر بدست آوردن عددی بنام میتر فاکتور می باشد که از تقسیم مقدار واقعی حجم سیال عبور کرده از دستگاه به مقدار قرائت شده حاصل می گردد.

معیار تعیین شده برای دقت مطلوب برای میترها در سرویس Custody Transfer عدد % 0.15 و برای تکرار پذیری آن عدد % 0.02 می باشد. بعبارتی میتری برای سرویس  Custody Transferمناسب می باشد که دقت و تکرارپذیری آن معادل یا بهتر از اعداد فوق باشد.

 

روشهای مختلفی برای پرووینگ میترها وجود دارد که می توان به روش های زیر اشاره نمود:

 

·         Conventional Pipe Prover

·         Small Volume Prover Systems

·         Volumetric Tank Prover

 

Conventional Pipe Prover

Small Volume Prover Systems

Volumetric Tank Prover


استانداردهای مورد تایید صنعت نفت ایران

 

مجموعه استانداردهای IPS-E-IN-240 ، IPS-C-IN-240 و  IPS-M-IN-240 حداقل الزامات طراحی، انتخاب جنس و نصب سیستمهای میترینگ در سرویس Custody Transfer را برای سیالات مایع ارائه می نماید. ضمنا استانداردهای API به عنوان استانداردهای مرجع توسط  IPS پذیرفته شده اند

که شامل استانداردهای زیرمیباشند:

             ·         MPMS Chapter 4 : Proving Systems

             ·         MPMS Chapter 5 : Metering

             ·         MPMS Chapter 6 : Metering Assemblies

             ·         MPMS Chapter 7 : Temperature Determination

             ·         MPMS Chapter 8 : Sampling

             ·         MPMS Chapter 12 : Calculation of Petroleum Quantities

             ·         MPMS Chapter 13 ; Application of Statistical Methods

             ·         MPMS Chapter 21 : Flow Measurement Using Electronic Metering Systems

 

در خصوص استانداردهای مرجع ، پارت 1 و 2 از استاندارد BS 6169 با عناوین زیرنیز جزء مراجع مورد قبول IPS می باشند.

 

     · BS 6169-1: Methods for volumetric measurement of liquid hydrocarbons. Displacement meter systems (other than dispensing pumps)

      ·   BS 6169-2: Methods for volumetric measurement of liquid hydrocarbons. Turbine meter systems

 

ضمنا استانداردهای ISO 2715 و ISO 2714 از مجموعه استانداردها ISO با عناوین زیرنیز در لیست استانداردهای مرجع IPS ذکر گردیده اند

 

       ·  ISO 2714: Liquid hydrocarbons -- Volumetric measurement by displacement meter systems other than dispensing pumps

       ·  ISO 2715: Liquid hydrocarbons -- Volumetric measurement by turbine meter systems

        · ISO 7278-3: Liquid hydrocarbons -- Dynamic measurement -- Proving systems for volumetric meters -- Part 3: Pulse interpolation techniques

 

در این خصوص استاندارد ISA RP31.1 با عنوان زیر در لیست مراجع IPS قراردارد:

 

          ·   ISA RP31.1: Specification, Installation, & Calibration of Turbine Flowmeters

 

در خصوص سیستم میترینگ گاز طبیعی نیز استاندارد API MPMS Ch. 14 قابل استفاده می باشد. . قابل ذکر است در این خصوص IPS استانداردی تدوین ننموده است.

 

به منظور اندازه گیری جرمی سیالات ، استاندارد API MPMS Ch. 5.6  با عنوان زیر قابل استناد می باشد.

 

          ·   API Manual of Petroleum Measurement Standards Chapter 5 - Metering, Section 6 - Measurement of Liquid Hydrocarbons by Coriolis Meters


 


لینک به قسمت دوم

 

۰ نظر موافقین ۰ مخالفین ۰ ۲۲ بهمن ۹۴ ، ۱۰:۴۶
سه شنبه, ۲۰ بهمن ۱۳۹۴، ۱۱:۱۴ ب.ظ

انتخاب توربین بخار برای محرک پمپ ها بخش 8

انتخاب توربین بخار برای محرک پمپ ها

بخش 8

لینک بخش 7


مصرف بخار


مصرف بخار معمولا بر اساس مقدار وزن بخاری که در واحد زمان مورد نیاز است تا توربین توان لازم را با درنظر گرفتن شرایط بخار تولید کند، بیان می شود. مصرف بخار معمولا بر اساس پوند بر ساعت اسب بخار(lb/hp-hr) و یا کیلوگرم بر ساعت کیلووات(kg/kW-hr) می باشد.

در کل هرچه انرژی بیشتری در بخار موجود باشد جریان کمتری برای ایجاد یک توان مشخص مورد نیاز است. انرژی موجود در بخار را می توان از نمودار مولیر  (Molier chart)به دست آورد. همچنین می توان از منابعی مانند ASME Publication of Theoretical Steam Rate Tables (1969) نیز استفاده کرد. مصرف بخار تئوری (Theoretical steam rate (TSR)) مقدار بخاری را مشخص می کند که توربین بخار هنگامی که راندمان آن صد در صد است مصرف می کند. به طور حتم این موضوع ممکن نمی باشد به خصوص برای توربین هایی که توان های پایین دارند. در حالی که راندمان توربین های بخار نیروگاه های برق ممکن است تا 90 درصد برسد، راندمان توربین های یک مرحله ای حدود 60 درصد می باشد و توربین هایی با راندمان کمتر از 30 درصد نیز غیر معمول نیستند.

رابطه مابین توان، انرژی، راندمان و جریان بخار بر اساس فرمول زیر می باشد:


راندمان یک توربین یک مرحله ای  از مشخصات کارکردی به دست می آید. معمولا مشخصات عملکردی به صورت منحنی راندمان به نسبت سرعت ( نسبت مابین سرعت پروانه و سرعت خروجی از نازل های توربین) ارایه می گردد.



قطر (D) چرخ توربین بر اساس طراحی توربین بوده و مابین سازندگان توربین متفاوت می باشد. به عنوان مثال بعضی از توربین های یک مرحله ای در پنج قطر 12، 14، 18، 22 و 28 اینچ پیشنهاد داده می شوند.

سرعت توربین(N)  معمولا بر اساس تجهیزی که توسط توربین رانده می شود تعیین می شود ولی گاهی اوقات استفاده از چرخدنده برای بهینه کردن راندمان توربین یا اینکه توربین در سرعتی مطلوب کار کند توصیه می گردد.

به عنوان مثال: توربینی با این مشخصات را در نظر بگیرید 200hp، 3600 rpm، 600 pisg/650°F/25 psig و TSR= 14.377 lb/hp-hr. و قیمت بخار مصرفی آن معادل $5.0/1000 lb می باشد. مقدار انرژی قابل دریافت از بخار 3413/14.377=273 Btu/lb می باشد. انتخاب توربینی با قطر چرخ 14in ممکن است ارزان ترین انتخاب باشد که توان مورد نیاز را تامین می کند. نسبت سرعت مساوی با:

Velocity ratio= p×14×3600/(2×32×778×237)½ =0.064

بر اساس نمودار شکل 12 مقدار راندمان پایه (Basic efficiency)توربین حدود 30 درصد می گردد. بعد از تصحیح، مقدار مصرف بخار معادل  38 lb/hp-hr می گردد.

در شکل 13 راندمان توربین بر روی نمودار مولیر نشان داده شده است.


·        اولین اتفاقی که می افتد افت هایی است که در Steam chest، شیر قطع و شیر گاورنر رخ می دهد.

·        نقطه دوم راندمان طبقه توربین می باشد. باید توحه کرد که راندمان پایه از توان مستقل می باشد.

·        افت های ناشی از windage، یاتاقان ها و سیستم تخلیه بخار راندمان کلی را ایجاد می کنند.

با با در نظر گرفتن قیمت $5.0/1000lb  برای بخار و 8000 ساعت کارکرد توربین در سال هزینه بخار مصرفی آن معادل عدد زیر خواهد بود:



فرض کنید هزینه اولیه خرید این توربین $25000 باشد. اگر توربین بزرگتر دارای قیمت $35000 باشد و مصرف بخار آن 33 lb/hp-hr باشد هزینه بخار مصرفی آن معادل مقدار زیر خواهد بود:




در نتیجه اضافه کردن $10000 در هزینه خرید می تواند موجب صرفه جویی سالانه $40000 شود.

به همین صورت اگر یک سایز توربین را بزگ تر کنیم قیمت آن $45000 خواهد شد و مقدار مصرف توربین معادل 30 lb/hp-hr خواهد شد که در نتیجه هزینه سالانه بخار مصرفی معادل $240,000 خواهد شد. که در نتیجه اضافه کردن $20000 به هزینه خرید موجب صرفه جویی $64000 در سال خواهد شد.

با در نظر گرفتن بزرگترین توربین (با قطر چرخ 28” ) هزینه خرید آن $55000 خواهد بود و مقدار مصرف بخار آن 27 lb/hp-hr می گردد. هزینه مصرف بخار سالانه $216000 خواهد شد. در نتیجه اضافه کردن $30000 هزینه اضافی در خرید موجب صرفه جویی سالانه $88000 خواهد گردید.



این مطلب ادامه دارد


ترجمه آزاد از: 

Selecting Steam Turbines For Pump Drives  by Michael A. Cerce and Vinod P. Patel

Proceedings Of The Twentieth International Pump Users Symposium • 2003




۰ نظر موافقین ۰ مخالفین ۰ ۲۰ بهمن ۹۴ ، ۲۳:۱۴
سه شنبه, ۲۰ بهمن ۱۳۹۴، ۱۱:۰۰ ب.ظ

انتخاب توربین بخار برای محرک پمپ ها بخش 7

انتخاب توربین بخار برای محرک پمپ ها

بخش 7

لینک بخش 6


اطلاعات لازم برای انتخاب توربین بخار


به منظور انتخاب توربین مناسب برای یک سرویس کاری مشخص، لازم است تا اطلاعات خاصی را از مشتری دریافت گردد. توان مورد نیاز تجهیزی که به توربین متصل می گردد و سرعتی که این توان در آن مورد نیاز است از موارد اصلی می باشند. مشتریان معمولا نقطه طراحی یا نرمال و همچنین حداکثر توان و سرعت مورد نیاز را مشخص می کنند. این مقدار می تواند حدود 10 درصد بالاتر از توان نرمال باشد.

اطلاعات دیگری که برای انتخاب توربین مورد نیاز است شرایط بخار موجود در سایت می باشد. فشار و دمای بخار ورودی به توربین بخار و همچنین فشاری که بخار در خروجی توربین می بایست داشته باشد برای انتخاب توربین مورد نیاز می باشد. این مقادیر مقدار انرژی قابل استحصال بخار را مشخص می کند.

داشتن اطلاعات فوق برای انتخاب توربین الزامی می باشد ولی ارایه اطلاعات دیگری که در زیر می آید به صورت اختیاری می باشد:

تجهیزی که به توربین متصل می گردد- در بسیاری از موارد تجهیزی که توسط توربین رانده می شود استفاده بعضی از تجهیزات جانبی را دیکته می کند. به عنوان مثال انتخاب نوع گاورنر،استفاده از جعبه دنده و بازه سرعت گاورنر.

نوع گاورنر استاندارد کنترل مورد نیاز برای تجهیزی که توسط توربین رانده می شود ممکن است نوع گاورنر را دیکته بکند. به عنوان مثال در پکیج های کمپرسورهای هوا معمولا از گاورنرهای NEAM D با محدوده سرعت بسیار کم استفاده می کنند.

ملاحظات ویژه در عملکرد- بعضی از نیازمندی ها موجب افزایش تجهیزات شده که می بایست در اسناد مناقصه این نیازمندی های ذکر گردند. مانند Auto-startup.

اهمیت مصرف بخار تجهیز و یا هزینه بخار مصرفی در فرآیند ارزیابی پیشنهادات- سازندگان توربین بخار همواره ارزان ترین توربینی را که نیازمندی های پروژه را برآورده سازد پیشنهاد می دهند. معمولا پیشنهادی با راندمان بالاتر و با قیمتی بیشتر موجود می باشد که ممکن است با در نظر گرفتن هزینه های آینده توربین گزینه مناسب تری باشد.



این مطلب ادامه دارد


ترجمه آزاد از: 

Selecting Steam Turbines For Pump Drives  by Michael A. Cerce and Vinod P. Patel

Proceedings Of The Twentieth International Pump Users Symposium • 2003


۰ نظر موافقین ۰ مخالفین ۰ ۲۰ بهمن ۹۴ ، ۲۳:۰۰
سه شنبه, ۲۰ بهمن ۱۳۹۴، ۱۰:۵۰ ب.ظ

انتخاب توربین بخار برای محرک پمپ ها بخش 6

انتخاب توربین بخار برای محرک پمپ ها

بخش 6

 

لینک بخش 5


استاندارهای توربین بخار


NEMA SM-23 (1991) عمدتا به عنوان مشخصات فنی (Specification)توربین ها در نظر گرفته می شود و به مطالب آن در دیگر مشخصات فنی ارجاع داده می شود. به ویژه مشخصات NEMA برای تعاریف سیستم کنترل و بارهای مجاز لوله کشی بخار استفاده می گردد.

API 611 که در خصوص توربین های بخار مصارف عمومی صنایع پتروشیمی، شیمیایی و گاز می باشد، مرسوم ترین استاندارد برای استفاده کنندگان صنایع فوق می باشد. نیازمندی های استاندارد API از استاندارد NEMA سختگیرانه تر می باشد.، ولی نیازمندیهای مصرف کنندهای این حوزه بهتر منعکس کرده و پوشش می دهد. کاربرد توربین ها در صنایع فرآورش هیدروکربن ها معمولا شامل تامین توان مورد نیاز پمپ ها و فن ها می باشد. این استاندارد همچنین برای توربین های دیگری که در مصارف عمومی و کمتر مهم مانند محرک کمپرسور هوا و یا ژنراتورها به کار می روند، نیز کاربرد دارد. انطباق با نیازمندی های استاندارد API611 می تواند موجب شود تا توربین5 تا 50 درصد افزایش قیمت نسبت به توربین هایی که بر اساس استاندارد سازنده طراحی می شوند، داشته باشد.

استاندارد API 612  در خصوص توربین های مصارف ویژه در صنایع پتروشیمی، شیمیایی و گاز می باشد. این استاندارد سخت گیرانه ترین استاندارد توربین های بخار می باشد.توبین های تحت این استاندارد به عنوان محرک کمپرسورهای فرآیند ها که به عنوان قلب فرآیند می باشند استفاده می گردند.

استاندارد API 612  هزینه های توربین بخار به طور چشم گیری بین دو تا ده برابر افزایش می دهد. تغییرات ساختاری در این استاندارد شامل محفظه یاتاقان فولادی، حداقل سازی نیروهای محوری بر روی یاتاقان محوری، ساخت روتور به صورت یکپارچه و فورج شده، آزمون های مواد، مدارک فنی، آزمون های گسترده تر با بازه های تلرانسی کمترتر برای مواردی مانند ارتعاشات، استنفاده از شیر توقف و اختناق هیدرولیکی، گاورنر الکترونیکی و جلوگیری کننده الکترونیکی از افزایش سرعت غیر مجاز، هدر از جنس فولاد ضد زنگ، لوله کشی برای تخلیه روغن، چهار ساعت آزمون مکانیکی و از این نوع موارد می باشد.

توربین های بخار تحت استاندارد API612 معمولا دارای توان های بالا بوده لذا به منظور به حداقل رساندن مصرف بخار آنها را به صورت چند طبقه می سازند.



این مطلب ادامه دارد


ترجمه آزاد از: 

Selecting Steam Turbines For Pump Drives  by Michael A. Cerce and Vinod P. Patel

Proceedings Of The Twentieth International Pump Users Symposium • 2003


۰ نظر موافقین ۰ مخالفین ۰ ۲۰ بهمن ۹۴ ، ۲۲:۵۰
دوشنبه, ۱۹ بهمن ۱۳۹۴، ۱۰:۳۰ ب.ظ

تکامل کمپرسورهای سانتریفوژ

Centrifugal Compressor Evolution

 

تکامل کمپرسورهای سانتریفوژ

 

این مقاله به پیشرفت های صورت گرفته در 50 سال اخیر در خصوص روش های طراحی، تحلیل و ساخت کمپرسورهای سانتریفوژ می پردازد. این مقاله نمایی از تاریخچه این بخش ها ارایه می دهد و توضیح می دهد که دیگر  نوآوری های تکنولوژیک در پیشرفت های آیرودینامیک و عملکرد توربوماشین های مدرن نقش داشته اند.

Download Link:

Centrifugal Compressor Evolution
حجم: 6.07 مگابایت


 

۰ نظر موافقین ۰ مخالفین ۰ ۱۹ بهمن ۹۴ ، ۲۲:۳۰