فرآورش در زیر دریا
فرآورش در زیر دریا
تجهیزات فراوری و انتقال سیال زیر دریا (Subsea) از آخرین تکنولوژی هایی هستند که در صنعت نفت و گاز در حال گسترش می باشند. در این فیلم با اجزاء یک سیستم انتقال زیر دریا شرکت GE آشنا می شوید.
فرآورش در زیر دریا
تجهیزات فراوری و انتقال سیال زیر دریا (Subsea) از آخرین تکنولوژی هایی هستند که در صنعت نفت و گاز در حال گسترش می باشند. در این فیلم با اجزاء یک سیستم انتقال زیر دریا شرکت GE آشنا می شوید.
The Intelligent Pipeline:
Achieving high performance by accelerating
the path from data to decision making
خطوط لوله هوشمند
به دست آوردن عملکرد بالا با شتاب دادن مسیر داده ها تا تصمیم سازی
در این نوشتار شرکت Accenture به تشریح راهکارهای خود در هوشمند سازی خطوط لوله و منافع آن می پردازد.
Download Link:
The Intelligent Pipeline
حجم: 339 کیلوبایت
انتخاب توربین بخار برای محرک پمپ ها
بخش 8
مصرف بخار
مصرف بخار معمولا بر اساس مقدار وزن بخاری که در واحد زمان مورد نیاز است تا توربین توان لازم را با درنظر گرفتن شرایط بخار تولید کند، بیان می شود. مصرف بخار معمولا بر اساس پوند بر ساعت اسب بخار(lb/hp-hr) و یا کیلوگرم بر ساعت کیلووات(kg/kW-hr) می باشد.
در کل هرچه انرژی بیشتری در بخار موجود باشد جریان کمتری برای ایجاد یک توان مشخص مورد نیاز است. انرژی موجود در بخار را می توان از نمودار مولیر (Molier chart)به دست آورد. همچنین می توان از منابعی مانند ASME Publication of Theoretical Steam Rate Tables (1969) نیز استفاده کرد. مصرف بخار تئوری (Theoretical steam rate (TSR)) مقدار بخاری را مشخص می کند که توربین بخار هنگامی که راندمان آن صد در صد است مصرف می کند. به طور حتم این موضوع ممکن نمی باشد به خصوص برای توربین هایی که توان های پایین دارند. در حالی که راندمان توربین های بخار نیروگاه های برق ممکن است تا 90 درصد برسد، راندمان توربین های یک مرحله ای حدود 60 درصد می باشد و توربین هایی با راندمان کمتر از 30 درصد نیز غیر معمول نیستند.
رابطه مابین توان، انرژی، راندمان و جریان بخار بر اساس فرمول زیر می باشد:
راندمان یک توربین یک مرحله ای از مشخصات کارکردی به دست می آید. معمولا مشخصات عملکردی به صورت منحنی راندمان به نسبت سرعت ( نسبت مابین سرعت پروانه و سرعت خروجی از نازل های توربین) ارایه می گردد.
قطر (D) چرخ توربین بر اساس طراحی توربین بوده و مابین سازندگان توربین متفاوت می باشد. به عنوان مثال بعضی از توربین های یک مرحله ای در پنج قطر 12، 14، 18، 22 و 28 اینچ پیشنهاد داده می شوند.
سرعت توربین(N) معمولا بر اساس تجهیزی که توسط توربین رانده می شود تعیین می شود ولی گاهی اوقات استفاده از چرخدنده برای بهینه کردن راندمان توربین یا اینکه توربین در سرعتی مطلوب کار کند توصیه می گردد.
به عنوان مثال: توربینی با این مشخصات را در نظر بگیرید 200hp، 3600 rpm، 600 pisg/650°F/25 psig و TSR= 14.377 lb/hp-hr. و قیمت بخار مصرفی آن معادل $5.0/1000 lb می باشد. مقدار انرژی قابل دریافت از بخار 3413/14.377=273 Btu/lb می باشد. انتخاب توربینی با قطر چرخ 14in ممکن است ارزان ترین انتخاب باشد که توان مورد نیاز را تامین می کند. نسبت سرعت مساوی با:
Velocity ratio= p×14×3600/(2×32×778×237)½ =0.064
بر اساس نمودار شکل 12 مقدار راندمان پایه (Basic efficiency)توربین حدود 30 درصد می گردد. بعد از تصحیح، مقدار مصرف بخار معادل 38 lb/hp-hr می گردد.
در شکل 13 راندمان توربین بر روی نمودار مولیر نشان داده شده است.
· اولین اتفاقی که می افتد افت هایی است که در Steam chest، شیر قطع و شیر گاورنر رخ می دهد.
· نقطه دوم راندمان طبقه توربین می باشد. باید توحه کرد که راندمان پایه از توان مستقل می باشد.
· افت های ناشی از windage، یاتاقان ها و سیستم تخلیه بخار راندمان کلی را ایجاد می کنند.
با با در نظر گرفتن قیمت $5.0/1000lb برای بخار و 8000 ساعت کارکرد توربین در سال هزینه بخار مصرفی آن معادل عدد زیر خواهد بود:
فرض کنید هزینه اولیه خرید این توربین $25000 باشد. اگر توربین بزرگتر دارای قیمت $35000 باشد و مصرف بخار آن 33 lb/hp-hr باشد هزینه بخار مصرفی آن معادل مقدار زیر خواهد بود:
در نتیجه اضافه کردن $10000 در هزینه خرید می تواند موجب صرفه جویی سالانه $40000 شود.
به همین صورت اگر یک سایز توربین را بزگ تر کنیم قیمت آن $45000 خواهد شد و مقدار مصرف توربین معادل 30 lb/hp-hr خواهد شد که در نتیجه هزینه سالانه بخار مصرفی معادل $240,000 خواهد شد. که در نتیجه اضافه کردن $20000 به هزینه خرید موجب صرفه جویی $64000 در سال خواهد شد.
با در نظر گرفتن بزرگترین توربین (با قطر چرخ 28” ) هزینه خرید آن $55000 خواهد بود و مقدار مصرف بخار آن 27 lb/hp-hr می گردد. هزینه مصرف بخار سالانه $216000 خواهد شد. در نتیجه اضافه کردن $30000 هزینه اضافی در خرید موجب صرفه جویی سالانه $88000 خواهد گردید.
این مطلب ادامه دارد
ترجمه آزاد از:
Selecting Steam Turbines For Pump Drives by Michael A. Cerce and Vinod P. Patel
Proceedings Of The Twentieth International Pump Users Symposium • 2003
انتخاب توربین بخار برای محرک پمپ ها
بخش 7
اطلاعات لازم برای انتخاب توربین بخار
به منظور انتخاب توربین مناسب برای یک سرویس کاری مشخص، لازم است تا اطلاعات خاصی را از مشتری دریافت گردد. توان مورد نیاز تجهیزی که به توربین متصل می گردد و سرعتی که این توان در آن مورد نیاز است از موارد اصلی می باشند. مشتریان معمولا نقطه طراحی یا نرمال و همچنین حداکثر توان و سرعت مورد نیاز را مشخص می کنند. این مقدار می تواند حدود 10 درصد بالاتر از توان نرمال باشد.
اطلاعات دیگری که برای انتخاب توربین مورد نیاز است شرایط بخار موجود در سایت می باشد. فشار و دمای بخار ورودی به توربین بخار و همچنین فشاری که بخار در خروجی توربین می بایست داشته باشد برای انتخاب توربین مورد نیاز می باشد. این مقادیر مقدار انرژی قابل استحصال بخار را مشخص می کند.
داشتن اطلاعات فوق برای انتخاب توربین الزامی می باشد ولی ارایه اطلاعات دیگری که در زیر می آید به صورت اختیاری می باشد:
تجهیزی که به توربین متصل می گردد- در بسیاری از موارد تجهیزی که توسط توربین رانده می شود استفاده بعضی از تجهیزات جانبی را دیکته می کند. به عنوان مثال انتخاب نوع گاورنر،استفاده از جعبه دنده و بازه سرعت گاورنر.
نوع گاورنر – استاندارد کنترل مورد نیاز برای تجهیزی که توسط توربین رانده می شود ممکن است نوع گاورنر را دیکته بکند. به عنوان مثال در پکیج های کمپرسورهای هوا معمولا از گاورنرهای NEAM D با محدوده سرعت بسیار کم استفاده می کنند.
ملاحظات ویژه در عملکرد- بعضی از نیازمندی ها موجب افزایش تجهیزات شده که می بایست در اسناد مناقصه این نیازمندی های ذکر گردند. مانند Auto-startup.
اهمیت مصرف بخار تجهیز و یا هزینه بخار مصرفی در فرآیند ارزیابی پیشنهادات- سازندگان توربین بخار همواره ارزان ترین توربینی را که نیازمندی های پروژه را برآورده سازد پیشنهاد می دهند. معمولا پیشنهادی با راندمان بالاتر و با قیمتی بیشتر موجود می باشد که ممکن است با در نظر گرفتن هزینه های آینده توربین گزینه مناسب تری باشد.
این مطلب ادامه دارد
ترجمه آزاد از:
Selecting Steam Turbines For Pump Drives by Michael A. Cerce and Vinod P. Patel
Proceedings Of The Twentieth International Pump Users Symposium • 2003
A Probabilistic Approach For Compressor Sizing And Plant Design
رویکرد احتمالی به سایز کردن کمپرسورها و طراحی تاسیسات
تصمیم گیری بر روی سایز و انتخاب تجهیزات در صنعت نفت و گاز در بسیاری از موارد بر اساس داده های ناقص می باشد. اغلب شرایط فرآیندی بر اساس تعداد زیادی از فرضیات درباره عملکرد خوب، شرایط بازار، شرایط محیطی و دیگر موارد می باشد. از آنجایی که هدف نهایی برآورده کردن تعهدات تولید می باشد، روش سنتی انتخاب تجهیزات بر اساس بدترین شرایط می باشد که اغلب موجب افزایش اندازه تجهیزات می شود. در واقعیت شرایط کاری معمولا به ندرت بر اساس بدترین حالت کاری در نظر گرفته شده خواهد بود. تاسیساتی که بر اساس بدترین شرایط کاری طراحی می شوند معمولا در شرایط بهینه کار نمی کنند و انعطاف آنها کمتر می شود و در نتیجه موجب افزایش هزینه های سرمایه ای و عملکردی می شود.
در این مقاله مولف روش احتمالی جدیدی که چهارچوب هوشمندانه تری برای طراحی ماشین های فرآیندی می باشد فراهم نموده است. این چهارچوب استاندارد از روش شبیه سازی مونت کارلو (Monte Carlo simulation) و تحلیل ریسک استفاده می کند. این روش های ارایه شده به طور دقیق تری عدم قطعیت های فرآیند و اثر آنها را بر کارکرد ماشین ها مشخص می کنند.
Download Link:
A Probabilistic Approach For Compressor Sizing And Plant Design
حجم: 951 کیلوبایت
مفاهیم اولیه قابلیت اطمینان -بخش اول
قابلیت اطمینان(Reliability)
بهبود قابلیت اطمینان اثر مهمی بر روی درآمد و سود دهی تاسیسات و کارخانه ها دارد. به منظور حداکثر سازی سود ماشین آلات می بایست حداکثر قابلیت اطمینان، حداکثر تولید و همچنین حداقل هزینه عمل کرد (حداکثر راندمان) را داشته باشند. به منظور دست یابی به این هدف بهره بردار می بایست نه فقط بعد از نصب تجهیزات در سایت بلکه در مراحل تعیین مشخصات تجهیز و طراحی آن نقش عمده ای را ایفا کند. تعمیر و نگهداری موثر در سایت، از زمان تعیین مشخصات پروژه آغاز می گردد. مشخصات ناکافی در خصوص ابزار دقیق و محل قرار گیری ابزارهای اندازه گیری می تواند برروی قابلیت اطمینان اثر بگذارد.
درک این موضوع مهم می باشد که طول عمر تجهیزات دوار بسیار بیشتر از زمانی است که برای تعیین مشخصات، طراحی و نصب آنها صرف می شود. این موضوع در شکل زیر نمایش داده شده است.
معمولا مدت زمان مورد نیاز برای انجام فرآیند های تعیین مشخصات، طراحی و نصب حدود 10درصد طول کل عمر تجهیز می باشد. عدم تعیین درست مشخصات تجهیز، طراحی و نصب نامناسب می تواند اثر بسزایی بر روی نیازمندی های تعمیر و نگهداری، هزینه تعمیرات و قابل دسترس بودن یک تجهیز داشته باشد. غربال کردن مناسب طراحی تجهیزات ( جلسات فنی قبل از برگزاری مناقصه و غیره) قبل از انتخاب تامین کننده تجهیز، ایجاد کنند پایه اصلی ساختاری است که قابلیت اطمینان بر آن بنا می شود. بدین نحو اعمال مشخصات فنی لازم برای حمل، سازه ها، نصب و راه اندازی می تواند قابلیت اطمینان را بهینه کرده و آن را به معنای درستی با توجه به طول عمر تجهیز از نظر هزینه به صرفه نماید.
تعاریف و واژگان مربوط به قابلیت اطمینان
واژگان قابلیت اطمینان
- قابلیت اطمینان (Reliability)
- قابلیت استفاده (Availability)
- قابلیت تعمیر (Maintainability)
- هزینه در دسترس نبودن (Cost of unavailability)
قابلیت اطمینان (Reliability)
قابلیت اطمینان توانایی یک واحد تجهیزات (Equipment unit) در انجام وظیفه ای که برای آن تعریف شده است می باشد، بدون آنکه در زمان مشخص شده دچار خرابی و توقف ناخواسته و برنامه ریزی نشده گردد.
تعریف فابلیت اطمینان برای تجهیزات حساس (که همیشه می بایست در حال کار باشند و تجهیزی هم به عنوان یدکی آنها در نظر گرفته شده است) بر اساس فرمول زیر تعریف می شود:
قابلیت اطمینان معمولا برای تجهیزاتی که در مصارف عمومی به کار می روند و تجهیزی یدکی برای آنها در نظر گرفته شده است، محاسبه نمی گردد. در این موارد تجهیز یدکی می بایست در صورت خرابی تجهیز اصلی استفاده گردد. در مواردی که این واحد های غیر قابل اطمینان باشند، قابلیت اطمینان آنها بر اساس فرمول زیر محاسبه می گردد:
می بایست در نظر گرفته شود که در محاسبه قابلیت اطمینان زمان هایی که بخاطر انجام تعمیرات پیشگیرانه ویا بر اساس برنامه ریزی های تعمیرات، تجهیز از سرویس خارج می شود لحاظ نمی گردند.
قابلیت استفاده(Avialability)
در قابلیت استفاده زمان های توقف ناشی از تعمیرات پیشگیرانه و پیش بینی شده نیز در نظر گرفته می شود.
زمان متوسط مابین خرابی (Mean Time Between Failure or MTBF) یک معیار برای اندازه گیری قابلیت اطمینان و قابلیت استفاده می باشد.
قابلیت تعمیرات
به توانایی انجام تمامی فعالیت های لازم برای تعمیرات تجهیز در حداقل زمانی که واحد تجهیز دوار لازم است به منظور تعمیرات خاموش شود، قابلیت تعمیرات گفته می شود.
یکی از پارامترهایی که برای اندازه گیری قابلیت تعمیرات می توان استفاده کرد زمان متوسط تعمیر تجهیز (Mean time to repair - MTTR) می باشد. نحوه محاسبه آن در زیر آمده است. هرچه مقدار MTTR کمتر باشد قابلیت تعمیرات بالاتر می رود.
هزینه های ناشی از قابل استفاده نبودن تجهیزات (Cost of unavailability)
تمامی واژه هایی قبلا در مورد آنها بحث گردید، قابلیت اطمینان، قابلیت استفاده و قابلیت تعمیرات به طور مستقیم بر روی درآمد محصول (Product revenue) اثر گذارند. درآمد محصول، عددی است که از تولید یک روز حاصل شده بر اساس واحد پول محلی بیان می شود. این مقدار می تواند با توجه به اندازه تاسیسات و نوع محصول دارای محدوده گسترده ای باشد.
در صورتی که یکی از تجهیزات حساس به دلیل خرابی از سرویس خارج شود و یا بخاطر قابلیت تعمیر ضعیف تعمیرات آن بیش از حد طول بکشد مقدار درآمد محصول به ازای هر روزی که خط تولید به دلیل خرابی تجهیز اصلی آن خوابیده است از دست می رود.
بنابراین مجموع هزینه قابل استفاده نبودن تجهیز حاصل جمع هزینه های زیر می باشد:
هزینه سالیانه قابل استفاده نبودت تجهیز دوار حساس
- درآمد از دست رفته روزانه محصول × تعداد روزهایی که تجهیز خوابیده بوده است
- هزینه های تعمیرات
- هزینه تعویض قطعات
- هزینه نیروی کار
- زمان های گردش کاری غیر ضروری
هزینه غیرقابل استفاده بودن تجهیزات می تواند به عنوان ابزاری قوی برای آماده سازی برنامه های بهبود قابلیت اطمینان استفاده گردد.
Reference:
Forsthoffer's Rotating Equipment Handbooks Vol 5: Reliability
Optimization through Component Condition and Root Cause Analysis
The Fundamentals Of Ac Electric Induction Motor Design And Application
شرحی بر مبانی موتورهای الکتریکی AC جریان القایی و کاربردهای آنها
- منبع تصویر فوق متن مقاله می باشد
Download Link:
The Fundamentals Of AC Electric Induction Motor Design And Application
حجم: 1.28 مگابایت
API Specification Review For Gas Turbine Driven Turbocompressors
Download Link:
API Specification Review For Gas Turbine Driven Turbocompressors
حجم: 331 کیلوبایت
Forsthoffer's Rotating Equipment Handbooks Vol 5: Reliability Optimization through Component Condition and Root Cause Analysis – Section 5
Section-5: Effective predictive maintenance: including root cause analysis techniques
همانگونه که در مطلب هزینه چرخه عمر پمپ و مبحث آشنایی با استاندارد API610 نیز ذکر شده بود یکی از با اهمیت ترین مباحث در خصوص تجهیزات دوار، اطمینان پذیری آنها در فرآیندها می باشد.
باید توجه داشت که بحث قابلیت اطمینان تجهیزات از ابتدای مراحل طراحی تاسیسات و خرید تجهیزات شروع می شود که این موضوع می بایست از ابتدا در تهیه مشخصات خرید دستگاه لحاظ گردد.
با توجه به اهمیت موضوع فوق در صنایع به خصوص صنایع نفت و گاز پتروشیمی از امروز هر هفته یک بخش از کتاب فوق که از انتشارات Elsevier Science & Technology Books می باشد برای علاقه مندان به اشتراک گذاشته می شود.
تاریخ به اشتراک گذاری بخش بعد 15-10-94 می باشد.
5 - Effective predictive maintenance: including root cause analysis techniques,
Pages 61-79
Download link:
Section 5- Effective predictive maintenance: including root cause analysis techniques
حجم: 811 کیلوبایت